B BYJU'S

Grade 07: Maths Exam Important Questions

B BYJU'S

Rational Numbers

Topic : Exam Important Questions

1. Write the rational number represented by the points A, B, and C

[3 marks]
In the given number line, there are four divisions between any two integers.
Hence, each division represents $\frac{1}{4}$.

Point A lies in the middle of -1 and -2 . So, it is at $\frac{-3}{2}$.

Point B is the third division between 0 and 1 . It is at $\frac{3}{4}$.

Point C is the first division between 2 and 3 . Thus, it represents $\frac{9}{4}$.
2. Which alphabet represents $\frac{-5}{8}$ on the given number line?

R represents $\frac{-5}{8}$ on the given number line.
[2 marks]

Rational Numbers

3. Are the rational numbers $\frac{-8}{28}$ and $\frac{32}{-112}$ equivalent? Give reason. [3 marks]

Given rational numbers are $\frac{-8}{28}$ and $\frac{32}{-112}$
Standard form of $\frac{-8}{28}=\frac{-8 \div 4}{28 \div 4}=\frac{-2}{7}$
$[\because$ HCF of 8 and $28=4]$
[1 mark]
And,
Standard form of $\frac{32}{-112}=\frac{32 \div 16}{-112 \div 16}=\frac{2}{-7}=\frac{-2}{7}$
$[\because$ HCF of 32 and $112=16$]
[1 mark]
Since, the standard form of $\frac{-8}{28}$ and $\frac{32}{-112}$ are equal.
Hence, they are equivalent.
[1 mark]
4. Find: $-2 \frac{1}{9}-6$
[2 marks]
$-2 \frac{1}{9}-6$
$=\frac{-19}{9}-\frac{6}{1}$
[0.5 mark]
$\frac{-19}{9}-\frac{6}{1}=\frac{-19 \times 1}{9 \times 1}-\frac{6 \times 9}{1 \times 9}$
$=\frac{-19}{9}-\frac{54}{9}$
[0.5 mark]
$\frac{-19}{9}-\frac{54}{9}=\frac{-19-54}{9}$
$=\frac{-73}{9}$
$=-8 \frac{1}{9}$
[1 mark]

Rational Numbers

5. Find the product:
$\frac{3}{7} \times\left(\frac{-2}{5}\right)$
[1 mark]
$\frac{3}{7} \times\left(\frac{-2}{5}\right)=\frac{3 \times(-2)}{7 \times 5}=\frac{-6}{35}$
[1 mark]
6. Find the value of:

$$
\begin{aligned}
& \frac{3}{13} \div\left(\frac{-4}{65}\right) \\
& {[2 \text { marks] }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{13} \div\left(\frac{-4}{65}\right) \\
& =\frac{3}{13} \times \frac{65}{(-4)} \\
& =\frac{3 \times 5}{1 \times(-4)} \\
& =\frac{15}{-4}=\frac{-15}{4}=-3 \frac{3}{4} \\
& {[2 \text { marks] }}
\end{aligned}
$$

Rational Numbers

7. Find the smallest number among $-\frac{2}{3^{\prime}}, \frac{9}{6^{\prime}}-\frac{5}{2}$ and $-\frac{3}{4}$.
[4 marks]
LCM of $3,6,2$ and 4 is 12(0.5 marks)
Converting the given numbers to equivalent rational numbers (having the same denominator), we get
$-\frac{2}{3}=-\frac{8}{12} \ldots$ (0.5 marks)
$-\frac{9}{6}=-\frac{18}{12} \ldots(0.5$ marks $)$
$-\frac{5}{2}=-\frac{30}{12} \ldots$ (0.5 marks)
$-\frac{3}{4}=-\frac{9}{12} \ldots$ (0.5 marks)
$-\frac{30}{12}<-\frac{18}{12}<-\frac{9}{12}<-\frac{8}{12} \ldots$ (0.5 marks)
$\Rightarrow-\frac{5}{2}<-\frac{9}{6}<-\frac{3}{4}<-\frac{2}{3} \ldots$ (0.5 marks)
Thus, the smallest out of the given rational numbers is $-\frac{5}{2} \ldots$ (0.5 marks)
8. Write the next three rational numbers to complete the pattern:
$\frac{-8}{7}, \frac{-16}{14}, \frac{-24}{21}, \frac{-32}{28}$, \qquad ___
[3 marks]
Given rational number is $\frac{-8}{7}$
So, the next three equivalent rational numbers are
$\frac{-8 \times 5}{7 \times 5}=\frac{-40}{35}, \frac{-8 \times 6}{7 \times 6}=\frac{-48}{42}$ and $\frac{-8 \times 7}{7 \times 7}=\frac{-56}{49}$
Hence, three next equivalent numbers are $\frac{-40}{35}, \frac{-48}{42}, \frac{-56}{49}$.
(3×1 = 3 marks)

Rational Numbers

9. Arrange the rational numbers $\frac{-7}{10}, \frac{5}{-8}, \frac{2}{-3}, \frac{-1}{4}, \frac{-3}{5}$ in ascending order. [3 marks]

Given rational numbers are $\frac{-7}{10}, \frac{5}{-8}, \frac{2}{-3}, \frac{-1}{4}, \frac{-3}{5}$.
To arrange in any order, we make denominators of all rational numbers as same.
\therefore LCM of $10,8,3,4$ and 5 is 120 .
So, $\frac{-7 \times 12}{10 \times 12}, \frac{5 \times 15}{-8 \times 15}, \frac{2 \times 40}{-3 \times 40}, \frac{-1 \times 30}{4 \times 30}, \frac{-3 \times 24}{5 \times 24}$

$$
=\frac{-84}{120}, \frac{75}{-120}, \frac{80}{-120}, \frac{-30}{120}, \frac{-72}{120}
$$

$$
=\frac{-84}{120}, \frac{-75}{120}, \frac{-80}{120}, \frac{-30}{120}, \frac{-72}{120}
$$

Since, denominators are same so ascending order of numerators are -84 , $-80,-75,-72,-30$
Hence, $\frac{-84}{120}<\frac{-80}{120}<\frac{-75}{120}<\frac{-72}{120}<\frac{-30}{120}$
i.e. $\frac{-7}{10}<\frac{2}{-3}<\frac{5}{-8}<\frac{-3}{5}<\frac{-1}{4}$
10. Which is greater in the following?
$\frac{3}{4}$ or $\frac{7}{8}$
[2 marks]
Given rational numbers are $\frac{3}{4}$ and $\frac{7}{8}$
Here, $\frac{3}{4}=\frac{3 \times 2}{4 \times 2}=\frac{6}{8}$ and $\frac{7}{8}=\frac{7 \times 1}{8 \times 1}=\frac{7}{8}$
[1 mark]
So, $\frac{7}{8}>\frac{3}{4}$.
Hence, the greater number is $\frac{7}{8}$.
[1 mark]

