

Grade 08: Maths **Exam Important Questions**

1. What is the units digit of the cube root of 29791?

[1 mark]

We know that, units place of cube root of a number ending with 1 will always be 1.

Therefore, unit digit of the cube root of 29791 is 1. [1 mark]

2. State True or False.

If square of a number ends with 5, then its cube ends with 25. [1 mark]

False

Since,
$$15^2 = 225, 15^3 = 3375$$
 (Did not end with 25)

[1 mark]

3. State True or False.

The cube of a two digit number may be a three digit number. [1 mark]

False

Let's take the smallest two digit number 10,

$$10^3$$
 = 1000 [Four digit number] [1 mark]

- 4. State whether the number given below is a perfect cube or not.
 - (i) 216
 - (ii) 128

[4 marks]

(i) 216

2	216
2	108
2	54
3	27
3	9
3	3
	1

[1 mark]

Prime factors of $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Here all factors are in groups of 3's (in triplets)

Therefore, 216 is a perfect cube number.

[1 mark]

(ii) 128

2	128
2	64

- $\begin{array}{c|c} 2 & 32 \\ \hline 2 & 16 \end{array}$
- 2 8
- 2 42 21

[1 mark]

Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Here one factor 2 does not appear in a 3's group.

Therefore, 128 is not a perfect cube.

[1 mark]

5. Is 9720 a perfect cube? If not, find the smallest number by which it should be divided to get a perfect cube.

[4 marks]

2	9720
2	4860
2	2430
3	1215
3	405
3	135
3	45
3	15
5	5
	1

[1.5 marks]

Prime factors of $9720 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5$ [0.5 mark]

The prime factors 3 and 5 do not appear in group of triplets. So, 9720 is not a perfect cube. [1 mark]

If we divide the number by $3\times3\times5,$ then the prime factorisation of the quotient will not contain $3\times3\times5=45$

$$\therefore 9720 \div 45 = \underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3}$$

$$=216$$

$$=(6)^3$$

Hence, the smallest number by which 9720 should be divided to get a perfect cube, is 45.

[1 mark]

6. By what smallest number should 3600 be multiplied to make it a perfect cube? Also, find the cube root of the product.

[5 marks]

2	3600
2	1800
2	900
2	450
3	225
3	75
5	25
5	5
	1

[1.5 marks]

Prime factors of $3600 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$ [0.5 mark]

Grouping the factors into triplets of equal factors, we get $3600=2\times2\times2\times2\times3\times3\times5\times5$

We know that, if a number is to be a perfect cube, then each of its prime factors must occur thrice.

We find that 2 occurs 4 times while 3 and 5 occurs twice only. Hence, the smallest number, by which the given number must be multiplied in order that the product is a perfect cube $= 2 \times 2 \times 3 \times 5 = 60$ [1 mark]

Also, product $=3600 \times 60 = 216000$ [0.5 mark]

Now, arranging into triplets of equal prime factors, we have $216000 = \underline{2 \times 2 \times 2} \times \underline{2 \times 2 \times 2} \times \underline{3 \times 3 \times 3} \times \underline{5 \times 5 \times 5}$ [1 mark]

Taking one factor from each triplets, we get $\sqrt[3]{216000} = 2 \times 2 \times 3 \times 5 = 60$ [0.5 mark]

7. Find the cube root of the following number by prime factorization method: 512 [3 marks]

512

2	512	
2	256	
$\overline{2}$	128	
2	64	
2	32	$[2 ext{ marks}]$
2	16	
2	8	
2	4	
2	2	•

$$\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}$$

$$=2 imes2 imes2$$

$$= 8 [1 mark]$$

- 8. Find the cube root of:
 - (i)343
 - (ii)1000
 - (iii)2744
 - (iv)74088

[4 marks]

$$(i)343 = 7 \times 7 \times 7$$

$$\therefore \sqrt[3]{343} = \sqrt[3]{7 \times 7 \times 7} = 7$$

So, the cube root of 343 is 7. [1 mark]

$$(ii)1000=10\times 10\times 10$$

$$\therefore \sqrt[3]{1000} = \sqrt[3]{10 \times 10 \times 10} = 10$$

So, the cube root of 1000 is 10. [1 mark]

$$(iii)2744=2 imes2 imes2 imes7 imes7$$

$$\therefore \sqrt[3]{2744} = \sqrt[3]{2 \times 2 \times 2 \times 7 \times 7 \times 7} = 2 \times 7 = 14$$

So, the cube root of 2744 is 14. [1 mark]

$$(iv)74088 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7$$

$$\therefore \sqrt[3]{74088} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 7 \times 7}$$
$$= 2 \times 3 \times 7 = 42$$

So, the cube root of 74088 is 42. [1 mark]