

Grade 08: Maths **Exam Important Questions**

1. Classify the given expressions based on the number of terms they have.

$2y - 3y^2 + 4y^3$	
1000	
$4z-15z^2$	
7+y+5x	

[2 marks]

Solution:

$\boxed{2y-3y^2+4y^3}$	Trinomial
1000	Monomial
$4z-15z^2$	Binomial
7+y+5x	Trinomial

[2 marks]

2. Find the like terms from the following:

$$7x, 14x, -13x, 5x^2, 7y, 7xy, -9y^2, -9x^2, and -5yx$$
 [1 mark]

Like terms from these are:

- (i) 7x, 14x, -13x are like terms.
- (ii) $5x^2$ and $-9x^2$ are like terms.
- (iii) 7xy and -5yx are like terms.

[1 mark]

3. Subtract $5a^2 - 7ab + 5b^2$ from $3ab - 2a^2 - 2b^2$ [2 marks]

$$\begin{aligned} &3ab-2a^2-2b^2-\left(5a^2-7ab+5b^2\right)\\ &=3ab-2a^2-2b^2-5a^2+7ab-5b^2\\ &=3ab+7ab-2a^2-5a^2-2b^2-5b^2\\ &=10ab-7a^2-7b^2\\ &=-7a^2-7b^2+10ab \ \ \mbox{(2 marks)} \end{aligned}$$

4. The perimeter of a triangle is $6p^2 - 4p + 9$ and two of its sides are $p^2 - 2p + 1$ and $3p^2 - 5p + 3$. Find the third side of the triangle.

[4 marks]

Solution:

Given: Perimeter of a triangle $=6p^2-4p+9$ Lengths of its two sides: p^2-2p+1 and $3p^2-5p+3$

Sum of the lengths of the given sides

$$=(p^2-2p+1)+(3p^2-5p+3)=(p^2+3p^2)+[(-2p)+(-5p)]+(1+3)$$

$$=4p^2\!\!-\!7p+4$$

[2 marks]

Now,

Length of the third side = Perimeter – Sum of the length of its two sides

$$=6p^2 - 4p + 9 - (4p^2 - 7p + 4) \ = 6p^2 - 4p + 9 - 4p^2 + 7p - 4 \ = (6p^2 - 4p^2) + (-4p + 7p) + (9 - 4) \ = 2p^2 + 3p + 5$$

Therefore, length of the third side is $2p^2 + 3p + 5$. [2 marks]

5. The cost of a chocolate is $\mathbb{T}(x+4)$ and Rohit bought $\mathbb{T}(x+4)$ chocolates. Find the total amount paid by him in terms of x. If x=10, find the amount paid by him.

[2 marks]

Solution:

Given,

Cost of 1 chocolate = (x + 4)

No. of chocolates bought = (x + 4)

Step 1: Finding amount paid in terms of x

We know that, total amount = Cost of one chocolate × Number of chocolates

$$= (x+4)(x+4)$$

$$= (x+4)^{2}$$

$$= x^{2} + 8x + 16 [\because (a+b)^{2} = a^{2} + b^{2} + 2ab]$$

Amount paid by Rohit = $(x^2 + 8x + 16)$

[1 mark]

Step 2: Finding actual amount paid, when x = 10

Given, x = 10

$$\therefore \text{ Total amount} = 10^2 + 8 \times 10 + 16$$
$$= \$196$$

Hence, amount paid by Rohit is ₹196.

[1 mark]

6. The height of a triangle is $x^4 + y^4$ and its base is 14xy. Find the area of the triangle.

[1 mark]

Area of triangle = $\frac{1}{2}$ × base × height

[0.5 mark]

Given,

Height = $x^4 + y^4$

Base = 14xy

$$\therefore$$
 Required area = $\frac{1}{2} \times (x^4 + y^4) \times 14xy$
= $7xy(x^4 + y^4)$

[0.5 mark]

7. Simplify the expression: $(x^2 - 5)(x + 5) + 25$ [2 marks]

$$(x^2-5)(x+5)+25 = x^2(x+5)-5(x+5)+25$$
 [0.5 marks]

$$=x^2\times x+x^2\times 5-5\times x-5\times 5+25\\ \hbox{[0.5 marks]}$$

$$=x^3+5x^2-5x-25+25 \ [0.5 ext{ marks}]$$

$$= x^3 + 5x^2 - 5x$$
 [0.5 marks]

8. Simplify (a+b)(2a-3b+c)-(2a-3b)c. [3 marks]

Solution:

Solving the first expression:

$$(a+b) imes (2a-3b+c) \ a imes (2a-3b+c) + b imes (2a-3b+c) \ 2a^2-3ab+ac+2ab-3b^2+bc \ 2a^2-3b^2-ab+ac+bc$$
 -----(i)

Solving the second expression:

$$-(2a-3b) imes c \ -2ac+3bc$$
 -----(ii) [1 mark]

Adding (i) and (ii),
$$2a^2-3b^2-ab+ac+bc-2ac+3bc\\=2a^2-3b^2-ab-ac+4bc$$
 [1 mark]