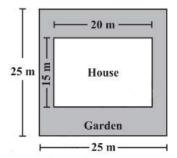


Grade 08: Maths **Exam Important Questions**



BYJU'S The Learning App

Mensuration

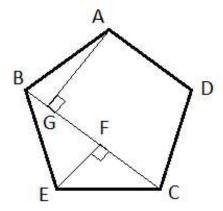
1. Mrs. Kaushik has a square plot with the measurement as shown in the figure. She wants to construct a house in the middle of the plot with the dimensions $20~m \times ~15~m$. A garden is developed around the house. Find the total cost of developing a garden around the house at the rate of 55 per m^2 .

[2 marks]

Solution:

According to the question, Side of the square plot $=25\ m$ Area of the square plot $=(Side)^2=(25)^2=625\ m^2$ [0.5 mark]

Length of the house =20~mBreadth of the house =15~mArea of the house = length \times breadth $=(20\times15)~m^2=300~m^2$ [0.5 mark]


Area of garden = Area of square plot — Area of house = $(625-300)\ m^2=325\ m^2$ [0.5 mark]

Cost of developing the garden per sq.m = \$55Cost of developing the garden 325 sq.m = $\$(55 \times 325) = \$17,875$

Hence, the total cost of developing a garden around the house is $\ge 17,875$. [0.5 mark]

2. In the given pentagon, ratio of area of trapezium ABCD to area of \triangle BEC is 5:2 and AG = 6 cm, EF = 4 cm. Find the length of BC if AD = 6 cm.

[5 marks]

Solution:

Area of trapezium ABCD

=
$$\frac{1}{2}$$
×(Sum of parallel sides)×height
= $\frac{1}{2}$ ×(AD+BC)×AG
= $\frac{1}{2}$ ×(6+BC)×6
= 3×(6+BC)

[1.5 marks]

Area of
$$\triangle$$
BEC = $\frac{1}{2}$ ×base×height
= $\frac{1}{2}$ ×BC×EF
= $\frac{1}{2}$ ×BC×4
= BC×2

[1 mark]

According to given condition,
$$\frac{\text{area of ABCD}}{\text{area of }\triangle BEC} = \frac{5}{2}$$

$$\Rightarrow \frac{3 \times (6 + BC)}{BC \times 2} = \frac{5}{2}$$

$$\Rightarrow \frac{6 + BC}{BC} = \frac{5}{3}$$

$$\Rightarrow 3 \times (6 + BC) = 5 \times BC$$

$$\Rightarrow 18 + 3(BC) = 5(BC)$$

$$\Rightarrow 18 = 2(BC)$$

$$\Rightarrow BC = \frac{18}{2} = 9 \text{ cm}$$

[2.5 marks]

3. The diagonals of a rhombus are $7.5~\mathrm{cm}$ and $12~\mathrm{cm}$. Find its area. [2 marks]

Solution:

Given
$$d_1=7.5~\mathrm{cm}~and~d_2=12~\mathrm{cm}$$

We know that,

Area of rhombus

$$=rac{1}{2} imes d_1 imes d_2$$

[1 mark]

$$=rac{1}{2} imes7.5 imes12=45~\mathrm{cm}^2$$

Hence area of rhombus is $45~\mathrm{cm^2}$ [1 mark]

4. Find the height of the cylinder whose volume if $1.54~\mathrm{m}^3$ and diameter of the base is $140~\mathrm{cm}$.

[3 marks]

Solution:

Given:

Volume of cylinder $= 1.54 \ \mathrm{m^3}$ and

Diameter of cylinder= $140~\mathrm{cm}$

:. Radius(r) =
$$\frac{d}{2}$$
 = $\frac{140}{2}$ = 70 cm = 0.7 m

[1 mark]

Volume of cylinder $=\pi r^2 h$ [0.5 mark]

$$\Rightarrow 1.54 = \frac{22}{7} \times 0.7 \times 0.7 \times h$$

$$\Rightarrow h = rac{1.54 imes 7}{22 imes 0.7 imes 0.7}$$

$$\Rightarrow h = \frac{154 \times 7 \times 10 \times 10}{22 \times 7 \times 7 \times 100} = 1 \text{ m}$$

Hence, the height of the cylinder is 1 m. [1.5 mark]

- 5. How many cubes each of side 0.5 cm are required to build a cube of volume of $8~{\rm cm}^3$?
 - [2 marks]

Solution:

Volume of a cube $= (Side)^3$

- ∴ Side of cube = 0.5 cm
- \therefore Volume of the cube $= (0.5)^3 = 0.125 \text{ cm}^3$

[1 mark]

The number of cubes required to make volume of $8~\mathrm{cm}^3$ cube

$$= \frac{8}{0.125}$$

$$= \frac{8000}{125} = 64 \text{ cubes}$$

[1 mark]

6. Find the capacity of the rectangular cistern in litres whose dimensions are $11.2~\mathrm{m} \times 6~\mathrm{m} \times 5.8~\mathrm{m}$. Find the area of the iron sheet required to make the cistern.

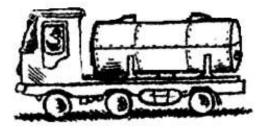
[3 marks]

Solution:

We know that volume of cuboid = length × breadth × height [0.5 mark]

Volume of the cistern =
$$11.2 \times 6 \times 5.8 = 389.76 \text{ m}^3$$

= $(389.76 \times 1000) \text{ litres}$
= 389760 litres
[1 mark]


Area of the sheet that required to make the cistern = Total surface area of the cistern

```
We know that total surface area of cuboid = 2(lb+bh+hl) [0.5 mark] = 2(11.2\times 6+6\times 5.8+5.8\times 11.2) = 2(67.2+34.8+64.96) = 333.92~\text{m}^2 [1 mark]
```

BYJU'S The Learning App

Mensuration

7. A milk tank is in the form of a cylinder whose radius is 1.5 m and length is 7 m. Find the quantity of milk in litres that can be stored in the tank.

[3 marks]

Solution:

Given : Radius of cylindrical tank (r)=1.5 m Height of cylindrical (h)=7 m Volume of cylindrical tank = $\pi r^2 h$ [0.5 mark]

$$= \frac{22}{7} \times 1.5 \times 1.5 \times 7$$

= 49.5 m³
= 49.5 × 1000 litres
[1 m³ = 1,000 litres]
= 49,500 litres

Hence, the quantity of milk that can be stored in the tank is 49,500 litres. [2.5 marks]

8. A swimming pool is $200~m \times 50~m$ and has an average depth of 2m. By the end of a summer day, the water level drops by 2 cm. How many cubic metres of water is lost on the day?

[3 marks]

Dimensions of swimming pool are $200 \ m \times 50 \ m$ Average depth of the swimming pool = 2 m At the end of summer day the water level drops by 2 cm [0.5 mark]

Volume of water in swimming pool = $Length \times Breadth \times Depth$ = $200 \times 50 \times 2 = 20000 \ m^3$

[0.5 mark]

If water level drops by 2 cm it means new level of water

$$=\left(2-rac{2}{100}
ight)m=198m \qquad \left[1~cm=rac{1}{100}m
ight]$$

Volume of water after summer day $=200 \times 50 \times 198 = 19800 \ m^3$ [1 marks]

So water in cubic metres was lost on that day = Initial volume - Volume after summer day

 $= 20000 - 19800 = 200 \ m^3$