

Grade 09: Maths Exam Important Questions

Topic: Exam Important Questions

1. Write the coefficient of x^2 in each of the following.

(i)
$$17 - 2x + 7x^2$$

(ii) 9 - 12x +
$$x^3$$

(iii)
$$\frac{\pi}{6}x^2$$
 - 3x + 4

(iv)
$$\sqrt{3} x - 7$$

[2 Marks]

Coefficient of x^2 ,

in (ii) is 0 as there is no term of x^2 i.e. 0 x^2 (0.5 mark)

in (iii) is
$$\frac{\pi}{6}$$
 (0.5 mark)

in (iv) is 0 (0.5 mark)

2. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:

(2 marks)

(i)
$$3x^2 - 4x + 15$$

(ii)
$$y^2 + 2\sqrt{3}$$

(iii)
$$3\sqrt{x} + \sqrt{2}x$$

(iv)
$$x-\frac{4}{x}$$

(v)
$$x^{12} + y^3 + t^{50}$$

(i)
$$3x^2$$
 - 4x + 15, (ii) y^2 + 2 $\sqrt{3}$

are polynomial is one variable. Others are not polynomial or polynomials in one variable.

(2 marks)

3. Verify 5 and 0 are the zeros of the polynomial $x^2 - 5x$. [2 marks]

Solution:

Here we have to verify whether 5 and 0 are the zeros of the polynomial x^2-5x .

Let
$$p(x) = x^2 - 5x$$

$$\Rightarrow p(5) = (5)^2 - 5(5)$$

$$\Rightarrow p(5) = 25 - 25$$

$$\Rightarrow p(5) = 0$$
 [1 mark]

Now similarly $p(0) = 0^2 - 5(0) = 0 - 0 = 0$.

Hence both 5 and 0 are zeros of the polynomial $p(x)=x^2-5x$. [1 mark]

- 4. Verify whether the following are true or false.
 - $(i) \ -3$ is a zero of $\ x-3$
 - $(ii) \ -rac{1}{3}$ is a zero of $\ 3x+1$
 - $(iii) \, rac{4}{5}$ is a zero of $\, 4 5y$

[3 marks]

(i) Let
$$p(x) = x-3$$

So for p(x) = 0 we get zero of p(x)

$$\Rightarrow x - 3 = 0$$

$$\Rightarrow x = 3$$

So x=3 is a zero of (x-3) only.

Hence, -3 is not a zero of (x-3)

Hence, the statement is false. (1 mark)

(ii) Let
$$p(x) = 3x + 1$$

So for p(x) = 0 we get zero of p(x)

$$\Rightarrow 3x + 1 = 0$$

$$\Rightarrow x = \frac{-1}{3}$$

So $x=rac{-1}{3}$ is a zero of (3x+1) only.

Hence, $\frac{-1}{3}$ is a zero of (3x+1)

Hence, the statement is true. (1 mark)

$$(iii)$$
 Let $p(y) = 4 - 5y$

So for p(y) = 0 we get zero of p(y)

$$\Rightarrow 4 - 5y = 0$$

$$\Rightarrow y = \frac{4}{5}$$

So $y=rac{4}{5}$ is a zero of (4-5y) only.

Hence, $-\frac{4}{5}$ is not a zero of (4-5y)

Hence, the statement is false. (1 mark)

5. Without actual division , prove that $2x^4-5x^3+2x^2-x+2$ is divisible by x^2-3x+2 .

[3 marks]

Solution:

Let
$$p(x) = 2x^4 - 5x^3 + 2x^2 - x + 2$$

Factorise $x^2 - 3x + 2$.

Now,
$$x^2-3x+2=x^2-2x-x+2$$
 [By splitting middle term]

=x(x-2)-1(x-2)=(x-1)(x-2)

Hence, zeros of
$$x^2-3x+2$$
 are 1 and 2. (1 mark)

We have to prove that, $2x^4-5x^3+2x^2-x+2$ is divisible by x^2-3x+2 .

i.e. prove that
$$p(1) = 0$$
 and $p(2) = 0$

Now.
$$p(1) = 2(1)^4 - 5(1)^3 + 2(1)^2 - 1 + 2$$

$$=2-5+2-1+2=6-6=0$$

$$p(2) = 2(2)^4 - 5(2)^3 + 2(2)^2 - 2 + 2$$

$$= 2 \times 16 - 5 \times 8 + 2 \times 4 + 0$$

$$=32-40+8=40-40=0$$

Hence, p(x) is divisible by x^2-3x+2 . (2 marks)

6. Find p(0), p(1) and p(2) for each of the following polynomials:

(i)
$$p(y) = y^2 - y + 1$$

(ii)
$$p(t) = 2 + t + 2t^2 - t^3$$

[3 marks]

Solution:

$$p(y) = y^2 - y + 1$$

$$p(0) = 0^2 - 0 + 1 = 1$$
 [0.5 mark]

$$p(1) = 1^2 - 1 + 1 = 1$$
 [0.5 mark]

$$p(2) = 2^2 - 2 + 1 = 3$$
. [0.5 mark]

$$p(t) = 2 + t + 2t^2 - t^3$$

$$p(0) = 2 + 0 + 2 \times 0^2 - 0^3 = 2$$
 [0.5 mark]

$$p(1) = 2 + 1 + 2 \times 1^2 - 1^3 = 4$$
 [0.5 mark]

$$p(2) = 2 + 2 + 2 \times 2^2 - 2^3 = 4 + 8 - 8 = 4$$
.[0.5 mark]

7. Factorise:

$$(i) \; x^3 - 2x^2 - x + 2$$

$$(ii) \ x^3 - 3x^2 - 9x - 5$$

$$(iii)\ x^3 + 13x^2 + 32x + 20$$

$$(iv)\ 2y^3 + y^2 - 2y - 1$$

[5 marks]

Solution:

(i) Given;
$$x^3 - 2x^2 - x + 2$$

Factorising

$$x^3 - x - 2x^2 + 2$$

$$=x(x^2-1)-2(x^2-1) \ =(x^2-1)(x-2)$$

$$= (x^{-1})(x^{-2})$$
$$= [(x)^2 - (1)^2](x - 2)$$

$$=(x-1)(x+1)(x-2)$$

$$:: [(a^2 - b^2) = (a + b)(a - b)]$$

Conclusion

Thus,
$$x^3 - 2x^2 - x + 2$$

= $(x-1)(x+1)(x-2)$

(1 mark)

(ii) Given:
$$x^3 - 3x^2 - 9x - 5$$

Factorising

$$x^3 - 3x^2 - 9x - 5$$

$$= x^3 + x^2 - 4x^2 - 4x - 5x - 5$$

= $x^2(x+1) - 4x(x+1) - 5(x+1)$

$$= (x+1)(x^2 - 4x - 5)$$

$$=(x+1)(x^2-5x+x-5)$$

$$= (x+1)[(x(x-5)+1(x-5))]$$

$$=(x+1)(x-5)(x+1)$$

Conclusion

Thus,
$$x^3 - 3x^2 - 9x - 5$$

= $(x+1)(x-5)(x+1)$

(1.5 marks)

$$(iii)\ Given:\ x^3+13x^2+32x+20$$

Factorising

$$x^3 + 13x^2 + 32x + 20$$

$$= x^3 + x^2 + 12x^2 + 12x + 20x + 20$$

= $x^2(x+1) + 12x(x+1) + 20(x+1)$

$$=(x+1)(x^2+12x+20)$$

$$=(x+1)(x^2+2x+10x+20)$$

$$=(x+1)[x(x+2)+10(x+2)]$$

$$=(x+1)(x+2)(x+10)$$

Conclusion

Thus,
$$x^3 + 13x^2 + 32x + 20$$

= $(x+1)(x+2)(x+10)$

(1 mark)

24

(iv) Given:
$$2y^3 + y^2 - 2y - 1$$

Factorising

$$2y^3 + y^2 - 2y - 1$$

$$egin{aligned} &=2y^3-2y^2+3y^2-3y+y-1\ &=2y^2(y-1)+3y(y-1)+1(y-1)\ &=(y-1)(2y^2+3y+1) \end{aligned}$$

$$y = (y-1)(2y^2 + 3y + 1)$$

= $(y-1)(2y^2 + 2y + y + 1)$

$$y = (y-1)(2y^2 + 2y + y + 1)$$

= $(y-1)[(2y(y+1) + 1(y+1)]$

$$=(y-1)(y+1)(2y+1)$$

Conclusion:

$$Thus, 2y^3 + y^2 - 2y - 1 = (y - 1)(y + 1)(2y + 1)$$
 (1.5 marks)

If $(x^2-y^2)=18$ and (x-y)=3, find the value of $16x^2y^2$.

$$(x^2 - y^2) = (x - y)(x + y) = 18$$

$$(x-y)=3---(i)$$

$$(x+y) = \frac{18}{3} = 6 - - - -(ii)$$

Adding equation (i) and (ii) we get

$$2x = 9$$
 $x = \frac{9}{2}$

Substituting the value of x in equation (ii) we get $y = \frac{3}{2}$

Now substituting the value of x and y in $16x^2y^2$ we get,

$$=16x^2y^2 \ =16 imes(rac{9}{2})^2 imes(rac{3}{2})^2 \ =729$$

- 9. The value of $249^2 248^2$ is
 - **x A**. ₁₀₉
 - **x B**. 577
 - **x** C. 487
 - **D**. 497
 - $249^2 248^2 = (249 + 248)(249 248)$ Using identity, $[a^2 b^2 = (a+b)(a-b)] = 497 \times 1 = 497$
- 10. Calculate 103×107 using algebraic identities.
 - **A.** 10121
 - **B.** 11021
 - **x** C. ₁₀₀₂₁
 - **x D**. ₁₂₀₁₁

We know that $(x+a)(x+b) = x^2 + (a+b)x + ab$

To split 103×107 , we need a square that is easy to calculate.

Hence, x = 100, a = 3, b = 7

$$\therefore 103 \times 107 = (100 + 3)(100 + 7)$$

$$=100^2+(3+7)(100)+(3)(7)$$

$$= 10000 + 1000 + 21 = 11021$$