B BYJU'S

Grade 09: Maths Exam Important Questions

Quadrilaterals

Topic : Exam Important Questions

1. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$ (See the given figure). Show that $A P=C Q$.

[2 marks]
In $\triangle A P B \cong \triangle C Q D$
$\angle A P B=\angle C Q D\left(\right.$ Each $\left.90^{\circ}\right)$
$A B=C D$
(Opposite sides of parallelogram ABCD)
$\angle A B P=\angle C D Q$
(Alternate interior angles for $A B|\mid C D)$
$\therefore \triangle A P B \cong \triangle C Q D$
(By AAS congruency)
By using this result
$\triangle A P B \cong \triangle C Q D$, we obtain
$A P=C Q(B y C P C T)$

Quadrilaterals

2. Through A, B and C lines $R Q, P R$ and $Q P$ have been drawn, respectively parallel to sides BC, CA and AB of a $\triangle A B C$ as shown in figure. Show that $B C=\frac{1}{2} Q R$.

[3 marks]
[Properties of a parallelogram]
Given in $\triangle A B C, \mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{PR} \| \mathrm{AC}$ and $\mathrm{RQ} \| \mathrm{BC}$
To show $\quad B C=\frac{1}{2} Q R$.
Proof in Quadrilateral BCAR, BR ||CA and BC || RA
So, quadrilateral , BCAR is a parallelogram.
$\therefore B C=A R$

Now, in quadrilateral BCQA, BC \|AQ
And $A B \| Q C$
So, quadrilateral BCQA is a parallelogram.
$B C=A Q$

On adding Eqs (i) and (ii) we get
$2 B C=A R+A Q$
$\Rightarrow 2 B C=R Q$
$\Rightarrow B C=\frac{1}{2} Q R . \quad$ Hence proved
3. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\angle A=\angle B=45^{\circ}$. Find angles C and D of the trapezium.
[2 marks]
Given, $A B C D$ is a trapezium and whose parallel sides in the figure are $A B$ and $D C$. Since, $A B \| C D$ and $B C$ is transversal, then sum of two cointerior angles is 180°.

$\therefore \angle B+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-\angle B=180^{\circ}-45^{\circ}$
$\Rightarrow \angle C=135^{\circ} \quad$ (1 mark)

Similarly, $\angle A+\angle D=180^{\circ}$
$\Rightarrow \angle D=180^{\circ}-45^{\circ}\left[\because \angle A=45^{\circ}\right.$ given $]$
$\Rightarrow \angle D=135^{\circ}$

Hence, angles C and D are 135° each.
(1 mark)

Quadrilaterals

4. Solve the following question:
(i) Opposite angles of a quadrilateral $A B C D$ are equal. If $A B=4 \mathrm{~cm}$, determine CD. (1 mark)
(ii) Diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at O. If $O A=3 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$, determine the lengths of $A C$ and BD. (2 marks)
[Properties of a parallelogram]
(i) Given, opposite angles of a quadrilateral are equal. So, ABCD is a parallelogram and we know that in a parallelogram opposite sides are also equal.
$C D=A B=4 \mathrm{~cm} . \quad$ (1 mark)

(ii) Given, ABCD is a parallelogram $\mathrm{OA}=$

3 cm and $O D=2 \mathrm{~cm}$

We know that, diagonals of a parallelogram
bisect each other.
\therefore Diagonal AC $=2 \mathrm{OA}=6 \mathrm{~cm} \quad[\because A O=O C]$
And Diagonal $\mathrm{BD}=2 \mathrm{OD}=4 \mathrm{~cm} \quad[\because B O=O D]$
Hence the length of the diagonals $A C$ and $B D$ are 6 cm and 4 cm , respectively (2 marks)
5. Given below is a parallelogram. $A C$ and $B D$ are diagonals. If $A O=x+y, O C=$ $5 y, D O=3 x, O B=12$, they find x and y.

In the parallelogram $A B C D, A C$ and $B D$ are diagonals.
Since the diagonals of the parallelogram bisect each other,
$A O=O C$ and $B O=O D$.
$A O=x+y, O c=5 y$ (Given)
$x+y=5 y$
$\mathrm{DO}=3 \mathrm{x}, \mathrm{OB}=12$
$3 x=12$
On solving (ii), we get, $x=\frac{12}{3}=4$.
$x=4$
Using $x=4$ in (i), we get, $4+y=5 y$
On solving, we get, $4=5 y-y=4 y$
$4 y=4$
$y=\frac{4}{4}=1$
$x=4$ and $y=1$
6. The angle of quadrilateral are in the ratio $3: 5: 9: 13$. Find the all the angles of the quadrilateral.
[3 marks]

Let the common ratio between the angle be x , therefore, the angles will be $3 x, 5 x, 9 x$, and $13 x$ respectively.
As the sum of all interior angles of a quadrilateral is 360°,
$\therefore 3 x+5 x+9 x+13 x=360^{\circ}$
[0.5 marks]
$30 x=360^{\circ}$
$x=12^{\circ}$
[0.5 marks]
Hence, the angles are
$3 x=3 \times 12=36^{\circ}$
[0.5 marks]
$5 x=5 \times 12=60^{\circ}$
[0.5 marks]
$9 x=9 \times 12=108^{\circ}$
[0.5 marks]
$13 x=13 \times 12=156^{\circ}$
[0.5 marks]
7. In the following parallelogram, find the value of x.

[2 marks]

Solution:

Given that the quadrilateral is a parallelogram.
We know that, in a parallelogram the opposite angles are equal.
[1 mark]
$\therefore(-7+4 x)^{o}=81^{\circ}$
$\Rightarrow(4 x-7)^{o}=81^{\circ}$
$\Rightarrow 4 x=81^{\circ}+7^{\circ}=88^{\circ}$
$\Rightarrow 4 x=88^{\circ}$
$\Rightarrow x=\frac{88^{\circ}}{4}$
$\Rightarrow x=22^{\circ}$
Hence the value of x is 22°.
[1 mark]
8. In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively. Show that the line segments AF and EC trisect the diagonal BD.
[3 Marks]
[Mid Point Theorem]

Solution:

ABCD is a parallelogram.
$A B\|C D \Rightarrow A E\| F C$
Now, AB = CD, (Opposite sides of a parallelogram)
${ }_{2}^{1} A B={ }_{2}^{1} C D$
$\Rightarrow A E=F C$ (E and F are the mid-points of AB and CD)
AECF is a parallelogram.
(AE and CF are parallel and equal to each other)
Then, AF || EC (Opposite sides of a parallelogram) (1 Mark)

Now, in $\triangle D Q C$,
F is the mid-point of side DC and FP || CQ(as AF || EC)
P is the mid-point of $D Q$ (Converse of mid-point theorem)
$\Rightarrow D P=P Q \ldots$ (i)
In $\triangle A P B$,
E is the id-point of side $A B$ and $E Q \| A B$ (as $A F \| E C$).
Q is the mid-point of $P B$.
(By converse of mid-point theorem)
$\Rightarrow P Q=Q B \ldots$..(ii)
Now, we can conclude that,
$\mathrm{DP}=\mathrm{PQ}=\mathrm{BQ}$ (From (i) and (ii))
Hence, the line segments AF and EC trisect the diagonal BD.
(1 Mark)

Quadrilaterals

9. In the given figure, M, N, and P are the mid-points of $A B, A C$, and $B C$, respectively. If $\mathrm{MN}=3 \mathrm{~cm}, N P=3.5 \mathrm{~cm}$ and $\mathrm{MP}=2.5 \mathrm{~cm}$, find the length of $B C, A B$, and $A C$.

[3 Marks]
Here, $M N$ is a line which joins the mid-point M of $A B$ and N of $A C$.
Then, by mid-point theorem, $M N \| B C$ and $M N=\frac{1}{2} B C$
$\Rightarrow B C=2 M N=6 \mathrm{~cm}$
[1 Mark]
Similarly, $M P \| A C$ and $M P=\frac{1}{2} A C$
$\Rightarrow A C=2 M P=5 \mathrm{~cm}$
[1 Mark]
And, $N P \| A B$ and $N P=\frac{1}{2} A B$
$\Rightarrow A B=2 N P=7 \mathrm{~cm}$
[1 Mark]
So, the length of the sides BC, AB, and AC are $6 \mathrm{~cm}, 7 \mathrm{~cm}$, and 5 cm , respectively.

Quadrilaterals

10.

In figure, E and F are mid - points of the sides $A B$ and $A C$ respectively of the $\triangle A B C$. G and H are mid-points of the sides AE and AF respectively of the $\triangle A E F$. If $\mathrm{GH}=1.8 \mathrm{~cm}$, find BC .
[2 Marks]

Solution:

$E F=\frac{1}{2} B C$.
[0.5 Marks]
(\because E and F are mid-points of sides AB and AC of $\triangle A B C$)
$G H=\frac{1}{2} E F$.
[0.5 Marks]
($\because \mathrm{G}$ and H are mid-points of sides AB and AC of $\triangle A E F$)
From (1) and (2), we have,
$G H=\frac{1}{2} \times \frac{1}{2} B C=\frac{1}{4} B C$
$\Rightarrow B C=4 \times G H=4 \times 1.8 \mathrm{~cm}=7.2 \mathrm{~cm}$
[1 Mark]
Hence, $\mathrm{BC}=7.2 \mathrm{~cm}$
11. D, E and F are respectively the mid-points of the sides $A B, B C$ and $C A$ of a $\triangle A B C$. Prove that by joining these mid-points D, E and F , the $\triangle A B C$ is divided into four congruent triangles.
[4 Marks]
Given in a $\triangle A B C, D, E$ and F respectively the mid-points of the sides AB , $B C$ and CA.

To prove $\triangle A B C$ is divided into four congruent triangles.
Proof Since, ABC is a triangle and D, E and F are the mid-points of sides $A B, B C$ and $C A$, respectively

Then, $A D=B D=\frac{1}{2} A B, B E=E C=\frac{1}{2} B C$
And $A F=C F=\frac{1}{2} A C(1 M a r k)$
Now, using the mid-point theorem,
$E F \| A B$ and $E F=\frac{1}{2} A B=A D=B D$
$E D \| A C$ and $E D=\frac{1}{2} A C=A F=C F$
And $\quad D F \| B C$ and $D F=\frac{1}{2} B C=B E=C E(1 M a r k)$
In $\triangle A D F a n d \Delta E F D$,
$A D=E F$
$A F=D E$
$\mathrm{DF}=\mathrm{FD} \quad$ [Common]
$\therefore \triangle A D F \cong \triangle E F D \quad$ [by SSS congruence rule] (1 Mark)
Similarly, $\quad \triangle D E F \cong \triangle E D B$
And
$\triangle D E F \cong \triangle C F E$
So, $\triangle A B C$ is divided into four congruent triangles

Quadrilaterals

12. $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B$, $B C, C D$ and $D A . A C$ is the diagonal. Show that
(i) $\mathrm{SR} \| \mathrm{AC}$ and $S R=\frac{1}{2} A C$
(ii) $P Q=S R$
(iii) PQRS is a parallelogram.

[3 Marks]
(i) In $\triangle A D C, \mathrm{R}$ is the mid-point of DC and S is the mid-point of DA .

Thus, by mid-point theorem, SR\|AC and
$S R=\frac{1}{2} A C$.
(1Mark)
(ii) In $\triangle B A C, \mathrm{P}$ is the mid-point of AB and Q is the mid-point of BC .

Thus, by mid-point theorem, $\mathrm{PQ} \| \mathrm{AC}$ and $P Q=\frac{1}{2} A C$.
Also, $S R=\frac{1}{2} A C$
Hence, $P Q=S R$.
Mark)
(iii) $S R \| A C$... From Question (i)

PQ \| AC ... From Question (ii)
$\Rightarrow P Q \| S R$
From (ii), $\mathrm{PQ}=\mathrm{SR}$
Since, one pair of opposides of the quadrilateral PQRS is parallel and equal,
PQRS is a Parallelogram.
(1 Mark)
Hence Proved.

