B BYJU'S

Grade 09: Maths Exam Important Questions

Topic : Exam Important Questions

1. If the area of an equilateral triangle is $16 \sqrt{3} \mathrm{~cm}^{2}$, then the perimeter of the triangle is
[3 Marks]
[Area of an Equilateral Triangle]
Solution:
Given, area of an equilateral triangle $=16 \sqrt{3} \mathrm{~cm}^{2}$
\because Area of an equilateral triangle $=\frac{\sqrt{3}}{4}(\text { Side })^{2}$
$\Rightarrow \quad \frac{\sqrt{3}}{4}(\text { Side })^{2}=16 \sqrt{3} \Rightarrow(\text { Side })^{2}=64$
$\therefore \quad$ Side $=8 \mathrm{~cm}$
.....(2 Mark)
[taking positive square root because side is always positive]
\therefore Perimeter of an equilateral triangle $=3 \times$ side $=3 \times 8=24 \mathrm{~cm}$
....(1 Mark)
Hence, the perimeter of an equilateral triangle is 24 cm .
2. The edges of a triangular board are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . The cost of painting it at the rate of 9 paise per cm^{2} is \qquad -
(3 Marks)
[Heron's Formula]
Solution:
Since, the edges of a triangular board are $a=6 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm}$ and $\mathrm{c}=10 \mathrm{~cm}$.
Now, semi - perimeter of a triangular board,
$s=\frac{a+b+c}{2}$
$=\frac{6+8+10}{2}=\frac{24}{2}=12 \mathrm{~cm}$
....(0.5 Marks)
Now, area of a triangular board $=\sqrt{s(s-a)(a-b)(s-c)}$ [by Heron's formula]
$=\sqrt{12(12-6)(12-8)(12-10)}$
$=\sqrt{12 \times 6 \times 4 \times 2}$
$=\sqrt{(12)^{2} \times(2)^{2}}$
$=12 \times 2=24 \mathrm{~cm}^{2}$
....(2 Mark)
Given that, the cost of painting an area of $1 \mathrm{~cm}^{2}=$ Rs. 0.09
\therefore The cost of painting an area of $24 \mathrm{~cm}^{2}=0.09 \times 24=$ Rs 2.16
...(0.5 Marks)
Hence, the cost of painting the triangular board at the rate of 9 paise per cm^{2} is $R s$ 2.16.
3.

Find the area of a parallelogram given in the figure. Also, find the length of the altitude from vertex A on the side $D C$.
(4 marks)

Area of parallelogram $\mathrm{ABCD}=2$ (Area of $\triangle B C D$)
Now, the sides of a $\triangle B C D$ are $\mathrm{a}=12 \mathrm{~cm}, \mathrm{~b}=17 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$.

Semi-perimeter, $s=\frac{12+17+25}{2}=\frac{54}{2}=27$
(0.5 marks)
\therefore Area of $\triangle B C D=\sqrt{s(s-a)(s-b)(s-c)}$ [by Heron's formula]
$=\sqrt{27(27-12)(27-17)(27-25)}$
$=\sqrt{27 \times 15 \times 10 \times 2}$
$=\sqrt{9 \times 3 \times 3 \times 5 \times 5 \times 2 \times 2}$
$=3 \times 3 \times 5 \times 2=90 \mathrm{~cm}^{2}$
(2 marks)

Area of parallelogram ABCD $=2 \times 90$
$=180 \mathrm{~cm}^{2}$
Let ' h ' be the altitude of the parallelogram.
Area of parallelogram ABCD $=$ Base \times Altitude
$\Rightarrow \quad 180=D C \times h$
$\Rightarrow \quad 180=12 \times h$
$\therefore \quad h=\frac{180}{12}=15 \mathrm{~cm}$
(1 marks)

Hence, the area of parallelogram is $180 \mathrm{~cm}^{2}$ and the length of altitude is 15 cm.
(0.5 marks)
4. A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. Find the area of the parallelogram.

[5 marks]
[Heron's Formula]
Solution:
Let $A B C D$ be a parallelogram field with sides $A B=C D=60 m, B C=D A=$ 40 m and diagonal $B D=80 \mathrm{~m}$.
Area of parallelogram $\mathrm{ABCD}=2$ (Area of $\triangle A B D)$
Consider $\triangle A B D$,
Semi - perimeter of a triangle $\triangle A B D$,
$s=\frac{a+b+c}{2}$
$=\frac{A B+B D+D A}{2}$
$=\frac{60+80+40}{2}=\frac{180}{2}$
$=90 \mathrm{~m}$
......(1 Mark)
\therefore Area of $\triangle A B D=\sqrt{s(s-a)(s-b)(s-c)} \quad$ [by Heron's formula].
$=\sqrt{90(90-60)(90-80)(90-40)}$
$=\sqrt{90 \times 30 \times 10 \times 50}$
$=100 \times 3 \sqrt{15}=300 \sqrt{15} \mathrm{~m}^{2}$
....(2 Marks)
From Eq.(i),
Area of parallelogram $A B C D=2 \times 300 \sqrt{15}=600 \sqrt{15} \mathrm{~m}^{2}$
...(2 Mark)
Hence, the area of the parallelogram is $600 \sqrt{15} \mathrm{~m}^{2}$
5. A rhombus shaped sheet with perimeter 40 cm and one diagonal 12 cm , is painted on both sides at the rate of ₹ $5 \mathrm{per} \mathrm{cm}^{2}$. Find the cost of painting.

(3 Marks)

[Heron's Formula]
Solution:

Let $A B C D$ be a rhombus having each side equal
to xcm .
i.e, $A B=B C=C D=D A=x c m$

Given, perimeter of a rhombus $=40$
$\therefore A B+B C+C D+D A=40$
$\Rightarrow \mathrm{x}+\mathrm{x}+\mathrm{x}+\mathrm{x}=40$
$\Rightarrow 4 \mathrm{x}=40$
$\Rightarrow x=\frac{40}{4}$
$\therefore \quad x=10 \mathrm{~cm} \quad$ (1 mark)
In $\triangle A B C$,
let $\mathrm{a}=\mathrm{AB}=10 \mathrm{~cm}, \mathrm{~b}=\mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{c}=\mathrm{AC}=12 \mathrm{~cm}$
Now, semi-perimeter of
$\Delta A B C, s=\frac{a+b+c}{2}$
$=\frac{10+10+12}{2}=\frac{32}{2}=16 \mathrm{~cm}$
$\therefore \quad$ Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$ by Heron's formula
$=\sqrt{16(16-10)(16-10)(16-12)}$
$=\sqrt{16 \times 6 \times 6 \times 4}=4 \times 6 \times 2=48 \mathrm{~cm}^{2}$
\therefore Area of the rhombus $=2($ Area of $\triangle A B C)=2 \times 48$
$=96 \mathrm{~cm}^{2}$
The cost of painting a sheet of $1 \mathrm{~cm}^{2}=₹ 5$
\therefore The cost of painting a sheet of $96 \mathrm{~cm}^{2}=96 \times 5=₹ 480$
Hence, the cost of painting the sheet on both sides $=2 \times 480=₹ 960$ (1 mark)
6. The triangular side walls of a flyover have been used for advertisement. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m (see the given figure). The advertisements yield an earning of Rs 5000 per m^{2} per year. A company hired one of its walls for 3 months. How much rent did it pay?

Let the sides of the triangle (i.e., a, b, c) be $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m respectively.
Perimeter of triangle $=(122+22+120) \mathrm{m}$
$2 \mathrm{~s}=264 \mathrm{~m}$
$\therefore \mathrm{s}=132 \mathrm{~m}$
(0.5 marks)
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
(0.5 marks)
Area of the given triangle $=\sqrt{132(132-122)(132-22)(132-120)} m^{2}$
$=\sqrt{132(10)(110)(12)} m^{2}$
$=1320 \mathrm{~m}^{2} \quad$ (1 Mark)
Rent of $1 \mathrm{~m}^{2}$ area per year $=$ Rs 5000
Rent of $1 \mathrm{~m}^{2}$ area per month $=R s \frac{5000}{12}$
Rent of $1320 \mathrm{~m}^{2}$ area for 3 months $=R s\left(\frac{5000}{12} \times 3 \times 1320\right)$

$$
\begin{aligned}
& =R s(5000 \times 330) \\
& =R s 16,50,000 \quad(1 \text { Mark })
\end{aligned}
$$

Therefore, the company paid Rs 16,50,000.
7. Raju has a rearing farm which he has divided into 3 parts for rearing cows, sheeps and goats. Now using the given information, find the area alloted for cows.

We can see from the figure that, the area alloted for cows is a triangular region.
hence we can use Heron's formula to find the area alloted for rearing.
Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ [0.5 marks]
The length of the sides are $13 \mathrm{~m}, 14 \mathrm{~m}$ and 15 m .
Semiperimeter $=\frac{13+14+15}{2}=\frac{42}{2}=21 \mathrm{~m}$
[0.5 marks]
$\begin{aligned} & \text { Area }=\sqrt{21(21-13)(21-14)(21-15)} \\ &=\sqrt{21(8)(7)(6)} \\ &=84 \mathrm{~m}^{2} \\ & {[1 \text { mark }] }\end{aligned}$
8. Raju has a rearing farm which he has divided into 3 parts for rearing cows, sheeps and goats. Now using the given information, find the area alloted for sheeps.

(3 Marks)
[Heron's Formula]
Solution:
We can see from the figure that, the area alloted for sheeps is a triangular region.
hence we can use Heron's formula to find the area alloted for rearing.
Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
The length of the sides are $13 \mathrm{~m}, 13 \mathrm{~m}$ and 10 m .
Semiperimeter $=\frac{13+13+10}{2}=\frac{36}{2}=18 \mathrm{~m}$
(1Mark)
Area $=\sqrt{18(18-13)(18-13)(18-10)}$
$=\sqrt{18(5)(5)(8)}$
$=60 \mathrm{~m}^{2}$
(2Marks)

