

Topic : Exam Important Qustions

1. Which of the following symbols are incorrect? Give the correct symbols for the elements.

Elements	Symbols	
a) Cobalt	СО	
b) Carbon	С	
c) Aluminium	AL	
d) Potassium	Ро	
e) Argon	Ar	
f) Sulphur	SI	

[2 Marks]

Solution:

Following are the elements with incorrect symbols:

- Cobalt
- Aluminium
- Potassium
- Sulphur

[1 Mark]

Elements	Correct symbols
a) Cobalt	Со
b) Carbon	С
c) Aluminium	AI
d) Potassium	К
e) Argon	Ar
f) Sulphur	S

[1 Mark]

<u>69</u>

2.

Define the term atomicity. Identify the atomicity of the following molecules.

- a) CO
- b) H_2O
- c) S_8
- d) O_3
- e) He
- f) H_2SO_4
- g) PCl_3
- h) P_4

[5 Marks]

The number of atoms constituting a molecule is known as its atomicity. [1 Mark]

Molecule	Atomicity	У		
a) <i>CO</i>	2	[0.5 Marks]		
b) H_2O	3	[0.5 Marks]		
c) S_8	8	[0.5 Marks]		
d) <i>O</i> 3	3	[0.5 Marks]		
e) He	1	[0.5 Marks]		
f) H_2SO_4	7	[0.5 Marks]		
g) PCl ₃	4	[0.5 Marks]		
h) <i>P</i> ₄	4	[0.5 Marks]		

- 3. Classify the following as molecules of elements or molecules of compounds.
 - a) HNO_3
 - b) Ne
 - c) Br_2
 - d) *CH*₄

[2 Marks]

Molecule	Type of molecule	
a) HNO ₃	Molecule of compound	[0.5 Marks]
b) <i>Ne</i>	Molecule of element	[0.5 Marks]
c) Br_2	Molecule of element	[0.5 Marks]
d) CH_4	Molecule of compound	[0.5 Marks]

4. What does the abbreviation 'amu' stand for? [1 Mark]

According to IUPAC recommendations, mass of the atoms is expressed in terms of atomic mass unit (amu).

1 amu is defined as mass equal to one-twelth the mass of a carbon-12 atom.

[1 Mark]

5. State the law of conservation of mass. Give one example to illustrate this law. [2 Marks]

Law of conservation of mass:

The law of conservation of mass states that during a chemical reaction, mass is neither created nor destroyed.

In other words, the mass of the products in a chemical reaction must equal the mass of the reactants.

[1 Mark]

For example, when wood burns, the mass of the soot, ashes, and gases equals the original mass of the reatants i.e. wood and the oxygen.

[1 Mark]

6. State the postulates of Dalton's atomic theory.

[5 Marks]

The postulates of Dalton's atomic theory are: (a) Matter is composed of minute particles called atoms, which take part in chemical reactions.

[1 Mark]

(b) Atoms cannot be further divided.

[1 Mark]

(c) The atoms of different elements differ from each other in their properties, while the atoms of the same element are identical in all respects.

[1 Mark]

(d) Atoms combine in the ratio of small whole numbers to form compounds.

[1 Mark]

(e) Atoms can be neither created nor be destroyed.

[1 Mark]

- 7. Write the chemical formula of nitrates formed by the following cations:
 - (i) *Li*⁺
 - (ii) Ca^{2+}
 - (iii) K^+

[3 Marks] [Exemplar] [Formulae of Simple Compounds]

Solution:

The valency of nitrate ion (NO_3^-) is 1.

(i) The valency of Li^+ ion = 1

Symbol Li *NO*₃ Valency 1 1

By criss-crossing the valencies, we will get the chemical formula i.e. $LiNO_3$.

[1 Mark]

(ii) The valency of Ca^{2+} ion = 2

Symbol Ca*NO*₃ Valency2 1

By criss-crossing the valencies, we will get the chemical formula i.e. $Ca(NO_3)_2$.

[1 Mark]

(iii) The valency of K^+ ion = 1

Symbol K*NO*₃ Valency 1 1

By criss-crossing the valencies, we will get the chemical formula i.e. KNO_3 .

[1 Mark]

8. Write the chemical formula and formula unit masses of:

(i) magnesium carbonate

(ii) aluminium oxide

[5 Marks]

(i) Magnesium carbonate consists of magnesium ion and carbonate ion, i.e., Mg^{2+} and CO_3^{2-} . Both the ions have valency 2.

Symbol MgCO₃

Valency2 2

Upon criss-crossing the valencies and balancing the charges, we get the formula as $MgCO_3$.

[1.5 Marks]

The formula unit mass of $MgCO_3$ =

(1 \times atomic mass of Mg) + (1 \times atomic mass of C) + (3 \times atomic mass of O) = (1 \times 24 u) + (1 \times 12 u) + (3 \times 16 u) = 84 u

[1 Mark]

(ii) Aluminium oxide consists of aluminium ion and oxide ion, i.e., Al^{3+} and O^{2-} , having valency 3 and 2 respectively.

Symbol AlO Valency3 2

Upon criss-crossing the valencies, we get the formula as Al_2O_3 .

[1.5 Marks]

The formula unit mass of Al_2O_3 = (2 × atomic mass of Al) + (3 × atomic mass of O) = (2 × 27 u) + (3 × 16 u) = 102 u

[1 Mark]